DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization
نویسندگان
چکیده
In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as more tractable alternatives to sum of squares optimization that rely instead on linear and second order cone programs respectively. These are optimization problems over certain subsets of sum of squares polynomials (or equivalently subsets of positive semidefinite matrices), which can be of interest in general applications of semidefinite programming where scalability is a limitation. We show that some basic theorems from SOS optimization which rely on results from real algebraic geometry are still valid for DSOS and SDSOS optimization. Furthermore, we show with numerical experiments from diverse application areas—polynomial optimization, statistics and machine learning, derivative pricing, and control theory—that with reasonable tradeoffs in accuracy, we can handle problems at scales that are currently far beyond the reach of sum of squares approaches. Finally, we provide a review of recent techniques that bridge the gap between our DSOS/SDSOS approach and the SOS approach at the expense of additional running time. The appendix of the paper introduces an accompanying MATLAB package for DSOS and SDSOS optimization.
منابع مشابه
Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming
We devise a scheme for solving an iterative sequence of linear programs (LPs) or second order cone programs (SOCPs) to approximate the optimal value of semidefinite and sum of squares (SOS) programs. The first LP and SOCP-based bounds in the sequence come from the recent work of Ahmadi and Majumdar on diagonally dominant sum of squares (DSOS) and scaled diagonally dominant sum of squares (SDSOS...
متن کاملResponse to "Counterexample to global convergence of DSOS and SDSOS hierarchies"
In a recent note [8], the author provides a counterexample to the global convergence of what his work refers to as “the DSOS and SDSOS hierarchies” for polynomial optimization problems (POPs) and purports that this refutes claims in our extended abstract [4] and slides in [3]. The goal of this paper is to clarify that neither [4], nor [3], and certainly not our full paper [5], ever defined DSOS...
متن کاملOn the construction of converging hierarchies for polynomial optimization based on certificates of global positivity
Abstract. In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial optimization problems (POPs) have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on ...
متن کاملSome Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making
We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision ...
متن کاملSums of Squares, Satisfiability and Maximum Satisfiability
Recently the Mathematical Programming community showed a renewed interest in Hilbert’s Positivstellensatz. The reason for this is that global optimization of polynomials in IR[x1, . . . , xn] is NPhard, while the question whether a polynomial can be written as a sum of squares has tractable aspects. This is due to the fact that Semidefinite Programming can be used to decide in polynomial time (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.02586 شماره
صفحات -
تاریخ انتشار 2017